this post was submitted on 01 Jun 2024
394 points (97.6% liked)
Technology
59589 readers
3077 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Nuclear technologies missed their window. The use cases where they are the best technical solution now are extremely limited, and that means you can get the investment going to improve them.
It’s a curiosity now.
There’s an alternative timeline where Chernobyl doesn’t happen and we decarbonize by leaning on nuclear in the nineties, then transition to renewables about now. But that’s not our timeline. And if it were, it would be in the past now.
I disagree, a bit.
Base load is still hard to get with renewables, unless you can get a somewhat consistent level of power from them. That's basically just hydro/tidal and geothermal at this point, and all of those have very limited areas where they can be used.
Nuclear, on the other hand, can be built anywhere except my backyard.
We have four choices:
We can do all of them concurrently, provided there's money for it, but we only give money to the last one.
I think this can be expanded out a bit, to the more generalizable case of matching generation to demand. Yes, storage can be a big part of that.
But another solution along the same lines may be demand shifting, which in many ways, relies on storage (charging car batteries, reheating water tanks or even molten salt only when supply is plentiful. And some of that might not be storage, per se, but creating the useful output of something that actually requires a lot of power: timing out industrial processes or data center computational tasks based on the availability of excess electrical power.
Similarly, improvements in transmission across wide geographical areas can better match supply to demand. The energy can still be used in real time, but a robust enough transmission network can get the power from the place that happens to have good generation conditions at that time to the place that actually wants to use that power.
There's a lot of improvement to be made in simply better matching supply and demand. And improvements there might justify intentional overbuilding, where generators know that they'll need to curtail generation during periods where there's more supply than demand.
And with better transmission, then existing nuclear plants might be able to act as dispatchable backup power rather than the primary, and therefore serve a larger market.
It's interesting watching how the 30minute electricy price has shifted patterns in the UK. 3-4 years ago there was no doubt that the cheapest time was 1am - 4am. These days the overnight dip isn't anywhere near as significant as it was, and it's now equally likely for 1pm-4pm to be the cheapest time of day.
All I can assume is that so many have moved usage to overnight due to "time of use" tariffs that now the demand curve has evened out a bit, and now the extra supply from solar during the day pushes the afternoon price down.