this post was submitted on 26 Jul 2024
431 points (96.9% liked)

Technology

59569 readers
3825 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[โ€“] seathru@lemmy.sdf.org 29 points 3 months ago* (last edited 3 months ago) (9 children)

For a smaller EV It would take around 200kWh worth of battery for a 600 mile range. The current Tesla "superchargers" put out 250kWh. So whatever is going to charge this battery will have to output roughly an order of magnitude more power in order to charge the battery in 6 minutes. That's an impressive and scary amount of energy transfer.

Edit: I don't know where I got 6 minutes from. So not quite 10X the power for charging, but a LOT more than current chargers.

[โ€“] Resonosity@lemmy.world 2 points 3 months ago* (last edited 3 months ago)

EE here. Chargers put out power in units of kW, while batteries store energy in units of kWh or MJ or what have you. Otherwise, you're absolutely correct.

Typically Distributed Generation (DG) scale solar PV and battery storage sites are sized anywhere from 1 to 10 MW.

At 1 MW, you could run (1) charger at a speed of 1 MW, or (2) at 500 kW, etc. Usually need just (1) transformer for that size installation too.

At 10 MW, you can run each charger at 1 MW or so, but you're also talking about probably (4-10) transformers @ $250k USD a pop. Installation prices go up the more you demand in power transfer.

Then you need to consider that most DG projects need to pay for the upgrades to their downstream grid architecture, meaning reconducting or upsizing cable, breakers, switches, transformers, reactors, sensors, relays, etc.

Not saying it's impossible. You could co-locate and DC-couple solar PV or Wind parks next to charging points to get around some of the grid upgrades, but most people live in areas that require homes and grocery stores and other buildings than flat land meant for solar PV or Wind.

When it comes down to it, it's so much easier to just trickle charge your EV at night via arbitrage and when you're sleeping so all of this infrastructure doesn't have to been upgraded - and I'd argue upgraded needlessly because we need to save that copper and iron and materials for upgrades to the parts of the grid meant to interconnect renewables.

But there is no silver bullet to these things so we'll likely see more, larger chargers come through unless regulators stop it from happening.

load more comments (8 replies)