this post was submitted on 20 Sep 2024
95 points (98.0% liked)
Technology
59569 readers
3825 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I would think molten metal would be more effective for this, molten sodium or lead or something? Maybe some kind of Tin/Lead eutectic like old solder?
Firebricks just seem inefficient somehow, particularly since the heat isn't going to be uniform, while molten metals or salts can circulate and convect the heat more efficiently than... air.
Their previous study also goes into efficiency and cost.
One of the main advantages of firebricks is their low cost.
Ok, they're claiming 98% rt efficiency.
I don't think we have 98% rt efficiency in anything, ever. That's miraculous. Batteries are around 92% at best? Pumped hydro is 85% or so.
That even sounds high for raw carnot efficiency.
I mean, if so, wow, that's awesome, and I don't really doubt their 1% daily decay, that seems attainable.
But 98% rt? I'm still skeptical.
It's heat though. They're turning electricity into heat then moving that heat to where it's needed, when it's needed. Making heat from electricity is nearly 100% efficient, and pumping losses for moving fluids are going to be tiny compared to the the amount of heat they can move. They quote the heat loss in storage seperately as 1% per day. It seems reasonable.
I can buy all of it, near perfect heating, but 2% for their forced air circulation combined with turbine and generation losses? Seems too good to be true.
Chatgpt (because we're all lazy) :
The overall thermal-to-electrical efficiency of a power plant, often referred to as plant efficiency, is the product of the steam turbine efficiency and the generator efficiency. Typical overall efficiencies for fossil-fuel-based steam turbine power plants (e.g., coal, natural gas) range from 33% to 40%.
In more advanced configurations like combined cycle power plants, which recover waste heat from the steam turbine exhaust to generate additional electricity, efficiencies can reach 50% to 60%.
Calculation Example:
If the steam turbine has an efficiency of 40%, and the generator has an efficiency of 98%, the total thermal-to-electrical efficiency would be:
\text{Total Efficiency} = 0.40 \times 0.98 = 0.392 \text{ or } 39.2%
So, for every 100 units of thermal energy input, 39.2 units are converted into electrical energy.
And that's if you're just heating the water before it hits the turbine, including the air circulation and basic entropy (there's a limit to how much you can pull out via heat differential), it seems like it should go down from there.
They're not converting it back into electricity, this is for industrial process heat. They have 100 units of electrical energy and 98 units go into whatever the industry needs to heat.
Lots of industries use ovens, kilns or furnaces. Mostly fueled by gas at the moment. Using electricity would be very expensive unless they can timeshift usage and get low spot prices. Since they need heat anyway, thermal storage is pretty cheap and efficient.
Oh, my bad. That makes perfect sense and I have no objections for purely thermal storage.
It said steam to customer, my brain filled that in with turbine.