this post was submitted on 11 Dec 2024
390 points (99.0% liked)
Technology
59963 readers
3503 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
One thing I've also noticed is people doing code reviews using ai to pad their stats or think they are helping out. At best it's stating the obvious, wasting resources to point out what doesn't need pointing out. At worst it's a giant waste of time based on total bullshit the ai made up.
I kinda understand why people would think LLMs are able to generate and evaluate code. Because they throw simple example problems at them and they solve them without much issue. Sometimes they make obvious mistakes, but these are easily corrected. This makes people think LLMs are basically able to code, if it can solve even some harder example problems, surely they are at least as good as beginner programmers right? No, wrong actually. The reason the LLM can solve the example problem, is because that example (or a variation) was contained within its training data. It knows the answer not by deduction or by reason, it knows the answer by memorization. Once you start actually programming in the real world, it's nothing like the examples. You need to account for an existing code base, with existing rules, standards and limitations. You need to evaluate which solution out of your toolbox to apply. Need to consider the big picture as well as small details. You need to think of the next guy working with the code, because more often than not, that next guy is you. LLMs crumble in a situation like this, they don't know about all the unspoken things, they haven't trained on the code base you are working with.
There's a book I'm fond of called Patterns of Enterprise Application Architecture by Martin Fowler. I always used to joke it contained the answer to any problem a software engineer ever comes across. The only trick is to choose the correct answer. LLMs are like this, they have all these patterns memorized and choose which answer best fits the question. But it doesn't understand why, what the upsides and downsides are for your specific situation. What the implications of the selected answer are going forward. Or why this pattern over another. When the LLM answers you can often prompt it to produce an answer with a completely different pattern applied. In my opinion it's barely more useful than the book and in many ways much worse.
Well said!
Also, we monitor beginners heavily because the smallest unsignificant error (in their eyes) can have long lasting downsides and cause strange problems further down the road...
Managers usually love to say they, too, coded back in the day, but they didn't, they wrote some small scripts and thinks everything is easy like that so why not use AI, and why is it taking long to fix that bug?!
To be fair, some of us were real developers with real experience; you just don’t tend to hear us making claims about how easy dev work is and how AI is going to take over all the coding.