this post was submitted on 24 Feb 2024
239 points (91.9% liked)
Technology
59589 readers
3148 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
As I often mention when this subject pops up: while the current statistics-based generative models might see some application, I believe that they'll be eventually replaced by better models that are actually aware of what they're generating, instead of simply reproducing patterns. With the current models being seen as "that cute 20s toy".
In text generation (currently dominated by LLMs), for example, this means that the main "bulk" of the model would do three things:
Because, as it stands, LLMs are only chaining tokens. They might do this in an incredibly complex way, but that's it. That's obvious when you look at what LLM-fuelled bots output as "hallucination" - they aren't the result of some internal error, they're simply an undesired product of a model that sometimes outputs desirable stuff too.
Sub "tokens" and "sememes" with "pixels" and "objects" and this probably holds true for image generating models, too. Probably.
Now, am I some sort of genius for noticing this? Probably not; I'm just some nobody with a chimp avatar, rambling in the Fediverse. Odds are that people behind those tech giants already noticed the same ages ago, and at least some of them reached the same conclusion - that better gen models need more awareness. If they are not doing this already, it means that this shit would be painfully expensive to implement, so the "better models" that I mentioned at the start will probably not appear too soon.
Most cracks will stay there; Google will hide them with an obnoxious band-aid, OpenAI will leave them in plain daylight, but the magic trick will still not be perfect, at least in the foreseeable future.
And some might say "use MOAR processing power!", or "input MOAR training data!", in the hopes that the current approach will "magically" fix itself. For those, imagine yourself trying to drain the Atlantic with a bucket: does it really matter if you use more buckets, or larger buckets? Brute-forcing problems only go so far.
Just my two cents.
I don't know much about LLMs but latent diffusion models already have "meaning" encoded into the model. The whole concept of the u-net is that as it reduces the spacial resolution of the image, it increases the semantic resolution by adding extra dimensions of information. It came from medical image analysis where the idea of labelling something as a tumor would be really useful.
This is why you get body dysmorphic results on earlier (and even current) models. It's identified something as a human limb, but isn't quite sure on where the hand is, so it adds one on to what we know is a leg.
There was an interesting paper published just recently titled Generative Models: What do they know? Do they know things? Let's find out! (a lot of fun names and titles in the AI field these days :) ) That does a lot of work in actually analyzing what an AI image generator "knows" about what they're depicting. They seem to have an awareness of three dimensional space, of light and shadow and reflectivity, lots of things you wouldn't necessarily expect from something trained just on 2-D images tagged with a few short descriptive sentences. This article from a few months ago also delved into this, it showed that when you ask a generative AI to create a picture of a physical object the first thing the AI does is come up with the three-dimensional shape of the scene before it starts figuring out what it looks like. Quite interesting stuff.