this post was submitted on 28 Dec 2023
943 points (97.8% liked)
Technology
59534 readers
3195 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
That consistent output isn't as useful as you think. Solar and wind are ridiculously cheap, so we would want to use them when they're available. That means winding down nuclear plants when those two spin up. I'm turn, that means those initial construction costs you mentioned aren't being efficiently ammortized over the entire life of the plant.
What we can do instead is take historical sun and wind data for a given region, calculate where the biggest trough will be, and then build enough storage capacity to cover it. Even better, aim for 95% coverage in the next few years, with the rest taken up by existing natural gas. There's some non-linear factors involved where getting to 100% is a lot harder than 95%.
The problem is that there are currently no good (cheap, scalable) technologies to store these large amounts of electrical energy.
There are several lines of storage research that only need to be ramped up to mass production at this point. Since stationary storage doesn't have the weight restrictions that electric car batteries do, there are many different viable options. Flow batteries, sodium batteries, pumping water uphill, big tower of concrete blocks on pullies, hydrogen electrolysis, big ceramic block that gets hot. Some will work wherever, others are only viable in certain situations, but there are many options and we only need one of them to work at scale.
When nuclear tries to make improvements, it tends to do one thing per decade. If it fails, wait another decade to try the next thing. Last decade, it was the AP1000 reactor. It was hoped it would make a single, repeatable design that would avoid the boutique engineering that caused budget and schedule overruns in the past. Didn't work out that way. This decade, it's Small Modular Reactors. The recent collapse of the Utah project doesn't give much hope for it.
Even if it does, it won't be proven out before 2030. We'll want to be on 90% clean electrical technology by then if we have even a hope of keeping climate change at bay. There is no longer a path with nuclear that could do so. Given project construction times, the clock ran out already.
While I don't disagree that it's going to be too late, I do think SMRs are likely to go the distance, at least abroad.
The reality is that we aren't going to hit 90% carbon free by 2030 without a huge social and political shift. There's just no way that is happening in 6 years. I really hate being a downer about it but I think we need to face the facts on it.