this post was submitted on 02 Dec 2023
3 points (100.0% liked)
Technology
59534 readers
3195 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
There's 2 significant inaccuracies in the article and 1 large oversight in the official video.
PS: differentials are irrelevant when the wheels aren't connected to each other. Individual-motor wheels, as shown in the video, don't need a diff. The non-drive wheels in a 2-wheel drive vehicle do not have a differential on the non-drive axle.
Cv joints are not specific to fwd as nearly all modern rwd cars with independent rear suspensions have CV joints. I don't know of any trucks still using U-joints either since big trucks are solid axle. Cv joints function the same as U joints. The difference is C.V. joints output constant velocity whereas U-joints (what you'll see often under trucks on the driveshaft, two square C shaft ends with an X link between) have lopey output that gets worse with greater deflection angle. If you own a u-joint bit for your socket wrench, I invite you to play with it. Instead of a solid pinned X between the U ends, CVs have free-rolling balls that can roll inboard and outboard to maintain the link between the shaft's cup and the wheel's cone.
The article is inaccurate but the video ignores this part, so I don't fault The writer. The CV joints are said to be a poor design, yet, it ignores the part where the video reinstalls them at 4:20 and 5:10 for the front wheels. This mechanism does not allow angular deflection between the motor and hub, as it's shown, without a CV joint. Lateral displacement, yes, but not angular - as in it can't steer. This may be an overall improvement by reducing how often it needs to bend (only when steering), but it doesn't eliminate it. And even then, the rear suspension is still designed to change camber as it changes ride height. Camber is the angle of the wheel as measured top to bottom, as in what you see from looking at the wheels from the front of the car. It keeps the wheels flat on the ground as you lean the car in a corner. You may see an overloaded car's rear wheels look like /---\ as viewed from the rear or ---/ when hanging free on a lift.
Look, I'm not an engineer at Hyundai (or even a competitor) but this doesn't quite pass the sniff test. Cool idea for sure, but it smells a little like marketing is clamoring for something edgy to display. Even as displayed, the motors and original reduces were already very compact and in close proximity to the wheels compared to a normal engine. The slightly reduced footprint of this uni wheel and slightly increased friction of a bunch of additional gears makes me think this is a fractional improvement in practice rather than a revolutionary improvement.