this post was submitted on 06 Sep 2024
1736 points (90.2% liked)
Technology
75460 readers
2811 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The argument that these models learn in a way that's similar to how humans do is absolutely false, and the idea that they discard their training data and produce new content is demonstrably incorrect. These models can and do regurgitate their training data, including copyrighted characters.
And these things don't learn styles, techniques, or concepts. They effectively learn statistical averages and patterns and collage them together. I've gotten to the point where I can guess what model of image generator was used based on the same repeated mistakes that they make every time. Take a look at any generated image, and you won't be able to identify where a light source is because the shadows come from all different directions. These things don't understand the concept of a shadow or lighting, they just know that statistically lighter pixels are followed by darker pixels of the same hue and that some places have collections of lighter pixels. I recently heard about an ai that scientists had trained to identify pictures of wolves that was working with incredible accuracy. When they went in to figure out how it was identifying wolves from dogs like huskies so well, they found that it wasn't even looking at the wolves at all. 100% of the images of wolves in its training data had snowy backgrounds, so it was simply searching for concentrations of white pixels (and therefore snow) in the image to determine whether or not a picture was of wolves or not.
Devil's Advocate:
How do we know that our brains don't work the same way?
Why would it matter that we learn differently than a program learns?
Suppose someone has a photographic memory, should it be illegal for them to consume copyrighted works?
Because we're talking pattern recognition levels of learning. At best, they're the equivalent of parrots mimicking human speech. They take inputs and output data based on the statistical averages from their training sets - collaging pieces of their training into what they think is the right answer. And I use the word think here loosely, as this is the exact same process that the Gaussian blur tool in Photoshop uses.
This matters in the context of the fact that these companies are trying to profit off of the output of these programs. If somebody with an eidetic memory is trying to sell pieces of works that they've consumed as their own - or even somebody copy-pasting bits from Clif Notes - then they should get in trouble; the same as these companies.
Given A and B, we can understand C. But an LLM will only be able to give you AB, A(b), and B(a). And they've even been just spitting out A and B wholesale, proving that they retain their training data and will regurgitate the entirety of copyrighted material.