this post was submitted on 27 Dec 2023
763 points (98.5% liked)

Technology

60589 readers
3662 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] You999@sh.itjust.works 28 points 1 year ago (8 children)

People have been using lithium-ion batteries for home and grid storage, which is nuts if you compare it to other battery types

Compared to other battery chemistry types using lithium makes tons of sense.

Lead acid type batteries like sealed and AGM are cheap but not power dense and do not offer the same discharge ability that lithium offers without damaging the battery (AGM fixes this but it's still an issue). Some lead acid batteries require continuous maintenance and vent toxic gasses which may be an issue depending on your encloser.

Nickel cadmium batteries solve a lot of issues that lead acid batteries are plagued with however they suffer from moisture intrusion issues causing self discharge. Nickel cadmium also suffers from memory effect which may completely ruin pour battery depending on your use. The elephant in the room with nickel cadmium is that it's banned in some countries including the European union due to how toxic cadmium is.

Now with lithium, it's a very energy dense battery which means you need less batteries to meet a capacity or you can fit more capacity into an encloser. There isn't any electrolyte or water maintenance you need to worry about. You can discharge and recharge as you wish with minimal damage. Really the only downsides is that they do not like charging in the cold, are just as toxic as cadmium, and are much much much more expensive.

[–] theblueredditrefugee@lemmy.dbzer0.com 27 points 1 year ago (2 children)

I find it interesting that, on a post about sodium ion batteries, your comment completely excludes them

[–] You999@sh.itjust.works 15 points 1 year ago (2 children)

The original comment was about lithium and their popularity for backup power. Sodium ion batteries are so new that you can't purchase them yet (blueitte supposedly released the NA300 but I can't find any in stock and it's no longer on their site).

It wouldn't be fair to compare a chemistry you cannot purchase and which it's strengths and weaknesses haven't been tested outside of controlled laboratory testing.

Fair point - I'm not really that good with the physical sciences personally so apologies for my ignorance

[–] astral_avocado@lemm.ee 1 points 1 year ago* (last edited 1 year ago)

You can buy them right now, there's more links in the 18650masterrace subreddit, but here's just one:

https://srikobatteries.com/product/sodium-ion-18650-1250mah-50a-rechargeable-battery/

However good luck finding a BMS that works for it's particular voltage range, don't think AliExpress has any yet.

I haven't seen any posts from those diy type folks experimenting with them yet. Sodium ion cells just became available within the last few months or so.

[–] ShepherdPie@midwest.social 10 points 1 year ago

Probably because they're new and the parent comment specifically referred to the cheaper, less energy dense battery types.

[–] Newtra@pawb.social 14 points 1 year ago* (last edited 1 year ago)

I agree that older commercialized battery types aren't so interesting, but my point was about all the battery types that haven't had enough R&D yet to be commercially mass-produced.

Power grids don't care much about density - they can build batteries where land is cheap, and for fire control they need to artificially space out higher-density batteries anyway. There are heaps of known chemistries that might be cheaper per unit stored (molten salt batteries, flow batteries, and solid state batteries based on cheaper metals), but many only make sense for energy grid applications because they're too big/heavy for anything portable.

I'm saying it's nuts that lithium ion is being used for cases where energy density isn't important. It's a bit like using bottled water on a farm because you don't want to pay to get the nearby river water tested. It's great that sodium ion could bring new economics to grid energy storage, but weird that the only reason it got developed in the first place was for a completely different industry.

[–] greenmarty@lemmy.world 10 points 1 year ago

Now with lithium.... are much much much more expensive

and explosive

[–] zalgotext@sh.itjust.works 7 points 1 year ago

Really the only downsides is that they do not like charging in the cold, are just as toxic as cadmium, and are much much much more expensive.

Seems like some pretty big and numerous downsides lmao

[–] AlexisFR@jlai.lu 2 points 1 year ago

Don't forget the volatility of Lithium batteries if they ever get damaged or punctured.

[–] absentbird@lemm.ee 1 points 1 year ago

What about nickle-metal hydride?